CORRECTION

The results of our recent paper, "Topography of Nucleic Acid Helices in Solution. I. The Nonidentity of Polyadenylic-Polyuridylic and Polyinosinic-Polycytidylic Acid Helices" (Edmond J. Gabbay, Biochemistry, Vol. 5, September 1966, p 3036), concerning the stabilization of nucleic acid helices by diquaternary ammonium salts, I, $R_1R_2R_3N^+(CH_2)_nN^+R_1R_2R_3\cdot 2X^-$, are somewhat misleading. We assumed that Mahler's statement [H. R. Mahler and B. D. Mehrotra (1963), Biochim. Biophys. Acta 68, 211; (1964), Biochim. Biophys. Acta 91, 78] that the simple diamines, II, NH2(CH2), NH2, exist in the diprotonated form at neutral pH is correct. However, we have found that the pK_1 of ethylenediamine, 1, is 6.88, and hence at pH 7.0 more than 50% of 1 exists in the monoprotonated form. For this reason the melting temperature of rA-rU and rI-rC in the presence of the dihydrobromide salts of II were reinvestigated at a lower pH. Fortunately, the results shown below indicate that maximum stabilization still occurs at n = 3for rA-rU and rI-rC helices. The arguments and conclusions drawn in the original paper remain accurate.

TABLE: Variation of $\Delta T_{\rm m}$ of rA-rU and rI-rC with 2 \times 10⁻³ M II, H₃N⁺(CH₂)_nNH₃·2Br⁻, in 0.10 M Sodium Phosphate Buffer at pH 6.15^a (0.10 M with respect to Na⁺).

n	rA-rU ^b	rI–rC°
2	6.2	7.5
3	8.2	9.0
4	7.2	6.4

^a At this pH, ethylenediamine exists in the diprotonated form to the extent of 90%, whereas the other diamines are 100% diprotonated. ^b $T_{\rm m}$ of blank is $56.0 \pm 0.2^{\circ}$. ^c $T_{\rm m}$ of blank is $59.0 \pm 0.3^{\circ}$.

EDMOND J. GABBAY